PHYSICS LAB MANUALS

Moment of Inertia of Flywheel

Moment of inertia is the name given to rotational inertia, the rotational analogue of mass for linear motion.
When the mass is left to descend after winding, there is a loss in potential energy Ploss. $$P_{loss}=mgh$$ This is converted into three energies: The flywheel’s kinetic energy, Kf, given by: $$K_f=\frac{1}{2}Iω^2$$ The vertical kinetic energy of falling mass, Km: $$K_m=\frac{1}{2}mv^2$$ Loss due to frictional torque, Wf: $$W_f=\frac{n}{2N}Iω^2$$ Equating energies, $$P_{loss}=K_f+K_m+W_f$$ $$⇒mgh=\frac{1}{2}Iω^2+\frac{1}{2}mv^2+\frac{n}{2N}Iω^2$$ $$⇒mgh= \frac{1}{2}Iω^2+\frac{1}{2}mω^2r^2+\frac{n}{2N}Iω^2$$ $$⇒mgh= \frac{1}{2}Iω^2+\frac{1}{2}mω^2r^2+\frac{n}{2N}Iω^2$$ $$I=\frac{Nm}{N+n}\left[\frac{2gh}{ω^2}-r^2\right]$$